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It is pointed out that the size of the matrix required to formulate the grand 
partition function for a one-dimensional lattice fluid for a fixed and fmite 
range of the interatomic potential varies linearly with the density of lattice 
points used and hence is much smaller and more manageable than the 
expected size (which varies exponentially with the same quantity) and thus 
allows very fine grids to be examined. Using the matrix treatment of the grand 
partition function, it is shown that the radial distribution function for a 
one-dimensional fluid or solution can be formulated as an explicit matrix 
product which is simply performed by computer. The resulting distribution 
functions (which can be extrapolated to the continuum by varying the lattice 
spacing) are useful as starting solutions for the iterative solution of integral 
equations for three-dimensional fluids. 

KEY W O R D S "  Radial distr ibution function; lattice solution; one-dimen- 
sional; matr ix formulation. 
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1. G R A N D  P A R T I T I O N  F U N C T I O N  FOR 
A O N E - D I H E N S l O N A L  LATT ICE  F L U I D  

Several years ago, working on the matrix formulation of the conformational 
partition function for nucleic acids, ~l,z) the author noticed that if a simple 
translation of symbols was made (like the translation magnet to lattice gas), 
a simple version of the nucleic acid partition function became the grand 
partition function (g.p.f.) for a one-dimensional lattice fluid. One of the main 
results of that work was that the size of the matrix required to treat the 
nucleic acid model was very much smaller than at first sight seemed necessary, 
and hence the same was true for the lattice fluid. The upshot was that it be- 
came practical to treat very fine grids of lattice points (i.e., the lattice spacing 
much smaller than the size of a particle and, by examining the properties as a 
function of lattice spacing, extrapolate to the continuum. Since the matrix 
products are much easier to handle than the integral equations that result 
from a continuum treatment, and, for fine enough grids, the two yield the 
same result, we present here the matrix treatment. The formulation of the 
g.p.f, for a one-dimensional lattice fluid has been discussed briefly in con- 
nection with helix-coil transitions in biopolymers (Ref. 2, Chapter 10). In 
this work, we review the construction of the g.p.f, and then turn in more 
detail to the derivation of explicit formulas for the radial distribution func- 
tions of one-dimensional fluids and solutions and display some numerical 
results. 

For explicitness, we consider a short-range (e.g., Lennard-Jones or 
Buckingham) interatornic potential r which has a minimum at r0, where 
we truncate the potential at a distance 2r o 

4(r) = O, r >~ 2ro (1) 

Equation (1) implies that the total energy of the one-dimensional system can 
be calculated as a sum of pair interactions between nearest neighbors (since 
a more distant neighbor cannot come significantly closer to an atom than 
2r0); the short range of the potential and specifically Eq. (1), while introduced 
to simplify the discussion and the resulting formulas, are not necessary to 
proceed and can be considerably relaxed without losing workability (trun- 
cation of short-range potentials has been shown to influence critical param- 
eters in three dimensions, ~z) a worry we do not have in one dimension). We 
introduce a lattice spacing parameter 3, which is the inverse of the number of 
fragments into which the distance r 0 is divided; ~ can vary from one to zero, 
the latter being the continuum limit. The number of pieces into which the 
distance 2ro is divided is designated no, 

no = 2/~ (2) 



O n e . D i m e n s i o n a l  Lat t ice  Fluids and Solut ions 161 

300 

20O 

100 

(# ( r )  o 

-tOO 

-200 

-300 

. . . . . . . . . . . . . .  r o 2 t o  

Fig. 1. Argon potential. The dotted curve shows the continuous potential, whi le the 
solid curve shows the lattice potential for a = 1/8 ; energy in cal/mole, distance in angstroms. 

The  smooth  potent ial  ~(r)  thus is divided into a series of  no steps q~(n); this 
is illustrated in Fig. 1 for  S = 1/8 for  a potent ial  characterist ic o f  argon 
[see Eq. (46)]. We next introduce Bol tzmann factors q~,  

qn = e-r  0 ~ n ~ n o 
(3) 

= 1 n ~> no = 2/5 

Now,  each lattice site can either be occupied by a particle or not,  a 
d icho tomy we represent  by assigning a "1"  or "0 , "  respectively, to sites with 
particles and with holes. The  state of  the lattice thus is given by a vector  
whose componen t s  are occupat ion numbers  (1 or  0); the factors q~ are 
assigned depending on the number  of  zeros between successive l 's ,  as 
illustrated below: 

q6 qs 
...0 1 0 0 0 0 0  1 0 0  1 0... 

We note f rom the above example  that  the state of  the lattice is character ized 
by N sequences of  zeros, where N is the total  number  of  particles on the 
lattice. I f  we number  the sequences, letting ~r be an index, then the canonical  
part i t ion function is given by a sum over  all possible values of  the sizes n~ o f  
the N sequences, 

N 

Z(M, N, T, 5) = ~ I~ Sq,~o/A = e -eF (4) 

where M is the number  of  lattice sites (M = L/~ if  L, the length o f  the 
lattice, is neasured in units o f  ro),/3 = 1/kT, and A has the usual meaning  

822/5/3-z 
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(the one-dimensional  integral over the m o m e n t u m ;  the factor  8 arises f rom 
integrat ion of  the coordinate  over the interval 8). The following constraints 
accompany  Eq, (4): 

N 

~ n ~  = M ~ const 
o=~ (5) 

N ~ const 

Since the constraints of  (5) make  life difficult, we pass to the g.p.f. : 

M 

Z(M, T, i~, 8) = ~ Z(M, N, T, 8) e eu" 
N=O 

M bs 

Z ~ l~ Yq,~ ( Y = 8er 
N = 0  nc~ cr=l 

= e ~L = e ~*M~ (6) 

where y is the (slightly doctored)  fugacity, p is the pressure (for one dimen- 
sion),/x is the chemical potential,  and L is the length of  the lattice [see remarks  
preceding Eqs. (5)]. Equat ion (6) has a single constraint,  

N 

n~ = M = const (7) 
cr=l  

which we can eliminate by passing to the generalized part i t ion function: 

where 

Y(T, p, i~, 8) = f 3 ( M ,  T,/z,  8) e - ~ L  
M = 0  

M N 

M = 0  N ~ 0  n a c~=1 

x = e s~  (9) 

Changing Eq. (8) to a sum over N f rom zero to infinity and rearranging the 
order of  operat ions leads to 

Y(T, p, ~, ~) = ~ yqJx 
=0 

(lo) 
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For  the p roper  value of  x, ~ ~ e ~L and Y blows up (as it should); this value 
of  x is simply given f rom the condit ion that  the denomina to r  in Eq. (10) 
equal zero, i.e., 

co 
yqn/x ~ = 1 (11) 

Since f rom Eq. (9) x is related to the pressure, 3 can be expressed in terms of  
the largest root  xl of  Eq. (1l): 

Z - -  xl M - -  e ~:u~ (12) 

where the most  p robable  number  of  particles, N*, on the lattice is given by 

c~(ln S)/~(ln y) = N* (13) 

giving for  the density 

p = ( l /g)  ~(ln Xl)/Cq(ln y) (14) 

where unit  density implies a particle every distance r0 on the lattice. F r o m  
Eqs. (12) and (14), the equat ion of  state is 

p/pkT = (1/S)(ln xO/[O(ln xO/~(ln y)] (15) 

The Helmhol tz  and Gibbs  free energies per  particle are 

f = (1//3)[In A + In y - -  (1/03) In xl] 

g = i x = f + PIp 
(16) 

Thus the study of  the the rmodynamic  propert ies  o f  a one-dimensional  
lattice fluid reduces to the use of  the simple generating function of  Eq. (11). 
Using Eq. (3), Eq. (11) can further  be simplified to 

{ ~o--1 I Yt ~ (qn/x") + [1/xn~ 1)1 = 1 (17) 

which is seen to be an n0th-order polynomial  in x. 
Our  model  o f  a one-dimensional  fluid m a y  alternatively be formula ted  

as a M a r k o f  chain represented as a matr ix  product .  Since we have two states 
per  lattice site (occupied or unoccupied)  in our  problem,  the size of  the 
matr ix  required to correlate n o lattice sites is 2 ~0-1 • 2 n0-1, which, if we 
divide r0 into ten parts  (i.e., ~ = 1/10), gives n o = 20, or  a 219 • 219 matr ix,  
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which is very large indeed. However, since both the generating function or 
matrix product route must lead to the same result, and since 

: e W U e  + 

( l /M)  In E = in At (for large M) (18) 

where W is the matrix of transition probabilities and e and e + are end vectors 
reflecting the desired boundary conditions, and ~1 is the largest eigenvalue of 
W, we have [compare Eqs. (18) and (12)] that A 1 ~ x~ and hence Eq. (17) is 
the secular equation of the matrix W. We have already noted that Eq. (17) is 
an noth-order polynomial and hence W can be drastically reduced from 
2 ~o-~ • 2 ~0-1 to no • no (the reason for this is that the larger matrix contains 
much more information than is required, e.g., detailed correlation of zeros). 
The method of reducing W and its structure have been discussed elsewhere 
(2, 4); we note here that from linear algebra the matrix of the characteristic 
polynomial is readily constructed. The structure of W is as follows: 

w l ~ =  y q j ,  j =  1, no 

w~+l,~ =- 1 j = t ,  n o -  1 

W%,no : 1 

w~,~ -- 0 all other i, j 

(19) 

We proceed now to a formulation of the radial distribution function in terms 
of  W. 

2. RADIAL D I S T R I B U T I O N  F U N C T I O N S  

In one dimension, it is convenient to introduce the conditional prob- 
ability P(1 [ n I 1) that an occupied site will be followed by an occupied site n 
sites away. The radial distribution function then is the ratio of the local 
density P(1 L n L 1) to the average site density 3p, 

g(n) = P(1 In[ 1)/~p (20) 

The quantity P(1 In[ 1) is calculated as the ratio of the g.p.f.'s for the 
following lattice configurations: 

I (1) ' "  (1/0) "-1 "'-(1) .." (1/0) J 

n (1) .-. (1 /0 ) -+J  

where configuration I indicates that there is an occupied site, (1), followed 
by n -- 1 sites that may be occupied or unoccupied, (1/0), followed by an 
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occupied site, which then is followed by J(1/0) sites; configuration II starts 
with an occupied site followed by n + J(1/0) sites. We then have 

P(1 I n I 1) = lim ~-~lfi.-~lI (21) 
o r -  ) co 

where lim J--* oo eliminates end effects. The g.p.f.'s in Eq. (21) are 

Z, = (elW~el+)(elWSex +) 

~ I I  = elW'++Je~ + 
(22) 

where W is given by Eq. (19) and where the end vectors reflect, and this is of 
some importance, the specific boundary conditions of the configurations I and 
II, where in particular, ex + means that the last unit can be followed by i or 0, 
and el and el + mean, respectively, that the preceding and following units 
are l's. For J--+ 0% we have 

lime~WS% + = qAJ 

l i m  e lW n+Jex  + - ClA~ +n 
(23) 

where A1 is the largest eigenvalue and cl is a factor arising from the similarity 
transformation and specific end vectors. Use of Eqs. (22) and (23) in Eq. (21) 
yields 

P(1 [nl 1) = elW%+/A~ '+ (24) 

and g(n) from Eq. (20). Expressing 2 in terms of the eigenvalues of W, with 
the specific boundary conditions 

gives 

elW'% + = ~ ci)ti n (25) 
i = 1  

P(1 I n j  1) = ~ ci(AJAO '+ (26) 
i = 1  

However, since use of Eq. (26) requires the computation of all the eigenvalues 
and eigenvectors of W, it is much simpler to use Eq. (24) explicitly, i.e., ex- 
plicitly perform the matrix multiplication (the calculation of the largest 
eigenvalue is very simple). We note 

lira P(1 ]n  t 1) = cl(flz/A1) ~ = cl = 8p 
J-~ co 

(27) 

The above formulation can easily be extended to treat one-dimensional 
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solutions, i.e., mixtures of several species of arbitrary density. First, we note 
that the g.p.f, for a solution of two species a and b (generalization to an 
arbitrary number of species being clear) can be written in terms of the hyper- 
matrix 

(W,~ Wab] (28) 
M = \Wb~ Wbd 

where W,o~ and Wbb have the same structure as given in Eq. (19) (with 
fugacities y ,  and y~ and Boltzmann factors q, ,  and qbb), while W,b is given by 

and Wb,, by 

wzj = Y~q.b(J), j = 1, n 
(29) 

wi~ = 0, all other i, j 

wla = Ybqb,(J), j = 1, no 
(30) 

Wit = 0 ,  all  other i, j 

The reason the W,b and Wb, do not contain the off-diagonal run of l 's 
found in W, ,  and Wbb is that this would overcount the possibilities for holes. 

To construct, for example, the conditional probability P ( a l n  [b) that, 
given a site occupied by an a particle, it is followed n sites away by a particle b, 
we consider the two configurations 

I ( a ) ' " ( a / b / O ) n - l " . ( b )  ...(a/b/O)S(a) 

Ii  (a)...(a/b/O)~+J(a) 

where (a/b/O) means that a 
Then, proceeding as in the 

P ( a l n  I b) = 

site can be occupied by a or b, or be unoccupied. 
case for a homogeneous fluid, we have 

(S,/S.) 

lim (e~Mneb+)(ebMJe,+)/(e~M~'+s% +) 
J-~ ao 

(G dc~)(eo, Mneb+)/Zl ~ (31) 

where again the end vectors reflect the specific boundary conditions of 
configurations I and II. 

To use Eq. (31), we must evaluate the factor cb~. In analogy with Eq. (27), 
we have 

c.a = 3p~ = (In ,~l)[eq(ln az)/a(In y.)] 

Cbb = 3pb = (in A1)[a(ln A1)/a(ln y~)] 
(32) 
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To proceed, we note that the construction and properties of  the matrices and 
end vectors lead to the following relations: 

yb%M~eb + = y~%M~% + (33) 

lim (e.M~eb+)(ebM~e~+)/(e~M2~% +) = Sp~ (34) 

Combining Eqs. (33) and (34), we have 

lira ( y./y~)(%Mne,~+)2/(e,~M2~e. +) = (y.c~./ybc~.)  = gob (35) 

giving 

Thus, 

where 

Cba = ~(pepbY~,/Ya)l/2 

P(a l n [ b) = (pb Yb/p~ Y.)l/2(%M~eb+)/Al~ 

P(b l n l a) = (Pa Y./Pb Yb)l/2(ebM~e.+)/hl ~ 

lim P ( a  l n I b) = Spb 
n ~ o o  

lira P(b ] n / a )  = 8p~ 

The radial distribution functions become 

g~b(n) = P(a l n l b)/@b = P(b l n l a)/3p.  = gb~(n) 

g.a(n) = eaM~%+/Sp.) l  ~ 

g b bOO = e bMne b+/3p ~hz n 

(36) 

(37) 

(38) 

(39) 

3. I L L U S T R A T I O N S  

H a r d  Rods. The simplest fluid is the case where the potential r is 
a hard core: 

r  = o~, r < r .  
(40) 

- 0 ,  r ~> r0 

In one dimension, exact relations r are known both for the equation of 
state and the radial distribution function, the former being simply 

p / p k T  = 1/(1 - -  p) (41) 

where p is defined as in Eq. (14), i.e., p - 1 is close packing; we will not 
diplay the fairly complicated series expression for g(r). Lee and Yang (9) have 
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Fig. 2. Equation of state, p/pkT,  as a function of the lattice parameter ~ for a one- 
dimensional fluid of hard rods; the density relative to close packing is 0.8. 

given the analog of Eq. (41) for the case of a lattice fluid of hard rods; their 
result is (in our notation) 

p / p k T  = (l/p3) ln[1 -k p3 / (1  - -  p)] (42) 

I t  is easily shown that in the limit 3 ~ 0, Eq. (42) becomes identical with Eq. 
(41). Hoover  e t a [ .  (1~ and later Poland and Scheraga (2) have compared the 
results of  Eq. (42) as a function of 3 with the continuum result, Eq. (41), 
i.e., 3--~ 0. Hoover  e t  al.  found that to calculate the pressure to 1 % ,  one 
needs a grid parameter of 3 = 1/50; such a grid would imply a 50 • 50 
matrix in our treatment (see below), which is quite manageable on present-day 
computers. Figure 2 shows p / p k T  as a function of 3 at p = 0.8; one sees that 
convergence to the continuum limit (8 = 0) is rapid and smooth, thus be- 
stowing a measure of  confidence on the extrapolation of the properties of 
lattice fluids to the continuum. 

With the potential of Eq. (40), Eq. (17) reduces to 

y = x %/2 - -  x (n~ (43) 

which is seen to be an (n0/2)th-order polynomial (n0/2 = 1/8) in this parti- 
cular case [the potential in this case extends only to r 0, not 2r0 as in Eq. (2)]. 
The matrix for this model is so simple as to be worth illustrating (for 3 = 1/8): 

W = 

~0 0 0 0 0 0 0 y~ 
1 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 
0 0 0 1 0 0 0 0 
0 0 0 0 1 0 0 0 
0 0 0 0 0 1 0 0 
0 0 0 0 0 0 1 1 

(44) 
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Figure 3 (the dots) shows g(n) for the model of hard rods for p ---- 0.71 
and 3 = 1/8 calculated from Eqs. (20), (24), and (44). Fig. 4 shows all the 
eigenvalues of the matrix of  Eq. (44) for y = 2.0 (which gives p = 0.71). 
One notes that since the matrices are not symmetric, one expects and finds 
complex eigenvalues (the largest being real); the eigenvalues are seen to be 
arranged regularly in the complex plane, being slightly skewed from the unit 
circle in the direction of positive x [recall that we use Eq. (24) directly to 
compute g(n) by performing the matrix multiplication explicitly and do not 
use the eigenvalues (except the largest), which are shown here simply for 
illustration]. 

Very accurate Monte Carlo radial distribution functions for hard disks 
[the two-dimensional use of Eq. (40)] have recently been published, all These 

3.0 

2 . 0  

g(r) 
10 

'\\ 

\ 
�82 

\ 

\e 
N 

�9 
1.0 

I I I 

\Q .~  �9 ~ - - _ ~  �9 

I t I 
1.5 2 0 2.5 

r 

Fig. 3. Radial distribution function for hard particles. The smooth curve is the Monte 
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results raise the question of how the one-dimensional and two-dimensional 
radial distribution functions compare. The problem in making such a com- 
parison is that there is no proper way to compare one- and higher-dimensional 
densities. However, if we assume that the average coordination (e.g., rough 
square, rough hexagonal) remains constant as a function of density, then the 
density relative to close-packing density is related to the one-dimensional 
density Pl for m dimensions as 

p,. = pz'~ (45) 

In particular, p~ = pl ~. Using this admittedly crude relation, we have that for 
P2 ~ 0.5, pl - 0.71. The smooth curve in 'Fig. 3 shows g(r )  for pz = 0.5 as 
computed by Monte Carlo techniques for a two-dimensional fluid of hard 
disks, (m while the dots give g(n)  for Pl = 0.71 as computed in this work. The 
similarity is fairly striking, the main difference being that the one-dimensional 
function has more pronounced hills and valleys due to the higher lining-up 
requirement of  one dimension. For two-dimensional densities (relative to 
close packing) of 0.4, 0.5, and 0.6, the Monte Carlo calculations give [using 
g(ro) and the virial theorem] p / p k T  ~ 2.058, 2.683, and 3.637, respectively, 
while the scaled one-dimensional approximation for the appropriate one- 
dimensional densities gives p / p k T  ~ 2.216, 2.644, and 3.167, respectively; 
the error is seen to be about 10 ~ .  The author does not propose that scaling 
of one-dimensional radial distribution functions and equations of  state be 
taken as a serious approach to two- and three-demensional fluids; the author 
does feel that it is worth pointing out that for half an inch of IBM cards and 
pennies of  computer time, fairly good starting solutions can be obtained, e.g., 
for the iterative solution of integral equations for two- and three-demensional 
fluids. 

Neon-Xenon Mixtures. 
simple "6-12" potential: 

for Ne-Ne,  
parameters (12 

For a mixture of neon and xenon, we use a 

r  = E[(ro/r) 12 - -  2(ro/r) 61 

Xe-Xe, and Ne-Xe  ( = X e - N e )  interactions 

Ne -Ne  r0 = 3.12 A e = 70 cal/mole 

Xe-Xe r0 = 4.60 ~ e = 442 cal/mole 

Ne-Xe  r 0 = 3.86 A e = 176 cal/mole 

(46) 

with the 

(47) 

Figure 5 gives gNe--Ne, 
Pxe = 0.62, T = 100 ~ and ~ = 1/9 computed from the potentials given 

gxe-Xe, and gNe-Xe r~gxe--Ne for PNe ~ 0 . 1 1 ,  
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Fig. 5. The radial distribution functions for a one-dimensional mixture of neon and 
xenon; T = 100 ~ ~ = 1/9, PNe = 0.11, and Oxe = 0.62 (densities relative to close- 
packed Xe). 

in Eq. (47) used in Eqs. (39) (densities are relative to close-packed Xe). We 
speculate that  radial dis t r ibut ion funct ions for one-dimensional  solutions 

may be useful estimates, e.g., of  g,~ for three-dimensional  solutions in the 

limit pA ~ O, but  not  for solutions of arbi t rary density of particles of very 

different size, since one dimension does not  introduce the packing problems 
inherent  in three dimensions. 
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